Resistance Distance and Kirchhoff Index of $Q$ -Double Join Graphs
نویسندگان
چکیده
منابع مشابه
the resistance distance and the kirchhoff index of the $k$-th semi total point graphs
the $k$-th semi total point graph $r^k(g)$ of a graph $g$, is a graph obtained from $g$ by adding $k$ vertices corresponding to each edge and connecting them to endpoint of edge considered. in this paper, we obtain formulae for the resistance distance and kirchhoff index of $r^k(g)$.
متن کاملTHE RESISTANCE DISTANCE AND KIRCHHOFF INDEX OF THE k-TH SEMI-TOTAL POINT GRAPHS
The k-th semi-total point graph R(G) of a graph G, is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of the edge considered. In this paper, we obtain formulas for the resistance distance and Kirchhoff index of R(G).
متن کاملResistance distances and the Kirchhoff index in Cayley graphs
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t In this paper, closed-form formulae for the Kirchhoff index and resistance distances of the Cayley graphs ov...
متن کاملKirchhoff index of composite graphs
Let G 1 + G 2 , G 1 • G 2 and G 1 {G 2 } be the join, corona and cluster of graphs G 1 and G 2 , respectively. In this paper, Kirchhoff index formulae of these composite graphs are given.
متن کاملnote on degree kirchhoff index of graphs
the degree kirchhoff index of a connected graph $g$ is defined as the sum of the terms $d_i,d_j,r_{ij}$ over all pairs of vertices, where $d_i$ is the degree of the $i$-th vertex, and $r_{ij}$ the resistance distance between the $i$-th and $j$-th vertex of $g$. bounds for the degree kirchhoff index of the line and para-line graphs are determined. the special case of regular grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2931406